Reichenberg, A. The assessment of neuropsychological functioning in schizophrenia. Dialogues Clin. Neurosci. 12, 383–392 (2010).

Article 
PubMed 

Google Scholar 

Fett, A.-K. J., Reichenberg, A. & Velthorst, E. Lifespan evolution of neurocognitive impairment in schizophrenia—a narrative review. Schizophr. Res. Cogn. 28, 100237 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar 

Seidman, L. J. et al. Association of neurocognition with transition to psychosis: baseline functioning in the second phase of the North American Prodrome Longitudinal Study. JAMA Psychiatry 73, 1239–1248 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar 

Cornblatt, B. A. & Erlenmeyer-Kimling, L. Global attentional deviance as a marker of risk for schizophrenia: specificity and predictive validity. J. Abnorm. Psychol. 94, 470–486 (1985).

Article 
PubMed 

Google Scholar 

Wallace, S. & Linscott, R. J. Intra-individual variability and psychotic-like experiences in adolescents: findings from the ALSPAC cohort. Schizophr. Res. 195, 154–159 (2018).

Article 
PubMed 

Google Scholar 

Sheffield, J. M., Karcher, N. R. & Barch, D. M. Cognitive deficits in psychotic disorders: a lifespan perspective. Neuropsychol. Rev. 28, 509–533 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Egan, M. F. et al. Relative risk of attention deficits in siblings of patients with schizophrenia. Am. J. Psychiatry 157, 1309–1316 (2000).

Article 
PubMed 

Google Scholar 

Erlenmeyer-Kimling, L. et al. Attention, memory, and motor skills as childhood predictors of schizophrenia-related psychoses: The New York High-Risk Project. Am. J. Psychiatry 157, 1416–1422 (2000).

Article 
PubMed 

Google Scholar 

Olde Loohuis, L. M. et al. Genetic and clinical analyses of psychosis spectrum symptoms in a large multiethnic youth cohort reveal significant link with ADHD. Transl. Psychiatry 11, 80 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar 

Cornblatt, B. A. & Malhotra, A. K. Impaired attention as an endophenotype for molecular genetic studies of schizophrenia. Am. J. Med. Genet. 105, 11–15 (2001).

Article 
PubMed 

Google Scholar 

Weinberger, D. R. Implications of normal brain development for the pathogenesis of schizophrenia. Arch. Gen. Psychiatry 44, 660–669 (1987).

Article 
PubMed 

Google Scholar 

Murray, R. M. & Lewis, S. W. Is schizophrenia a neurodevelopmental disorder? BMJ 295, 681–682 (1987).

Article 
PubMed 
PubMed Central 

Google Scholar 

Trubetskoy, V. et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 604, 502–508 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar 

Hughes, D. E. et al. Genetic patterning for child psychopathology is distinct from that for adults and implicates fetal cerebellar development. Nat. Neurosci. 26, 959–969 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar 

Jones, H. J. et al. Phenotypic manifestation of genetic risk for schizophrenia during adolescence in the general population. JAMA Psychiatry 73, 221–228 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar 

Zammit, S. et al. A population-based study of genetic variation and psychotic experiences in adolescents. Schizophr. Bull. 40, 1254–1262 (2014).

Article 
PubMed 

Google Scholar 

Nivard, M. G. et al. Genetic overlap between schizophrenia and developmental psychopathology: longitudinal and multivariate polygenic risk prediction of common psychiatric traits during development. Schizophr. Bull. 43, 1197–1207 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar 

Jansen, P. R. et al. Polygenic scores for schizophrenia and educational attainment are associated with behavioural problems in early childhood in the general population. J. Child Psychol. Psychiatry 59, 39–47 (2018).

Article 
PubMed 

Google Scholar 

Hatzimanolis, A. et al. Common genetic variation and schizophrenia polygenic risk influence neurocognitive performance in young adulthood. Am. J. Med. Genet. B 168B, 392–401 (2015).

Article 

Google Scholar 

Moreau, C. A. et al. Genetic heterogeneity shapes brain connectivity in psychiatry. Biol. Psychiatry 93, 45–58 (2023).

Article 
PubMed 

Google Scholar 

Cao, H., Zhou, H. & Cannon, T. D. Functional connectome-wide associations of schizophrenia polygenic risk. Mol. Psychiatry 26, 2553–2561 (2021).

Article 
PubMed 

Google Scholar 

MacDonald, S. W. S., Nyberg, L. & Bäckman, L. Intra-individual variability in behavior: links to brain structure, neurotransmission and neuronal activity. Trends Neurosci. 29, 474–480 (2006).

Article 
PubMed 

Google Scholar 

Chidharom, M., Krieg, J. & Bonnefond, A. Impaired frontal midline theta during periods of high reaction time variability in schizophrenia. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 6, 429–438 (2021).

PubMed 

Google Scholar 

Panagiotaropoulou, G. et al. Hypo-activity of the dorsolateral prefrontal cortex relates to increased reaction time variability in patients with schizophrenia. NeuroImage Clin. 23, 101853 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Shin, Y. S. et al. Increased intra-individual variability of cognitive processing in subjects at risk mental state and schizophrenia patients. PLoS ONE 8, e78354 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar 

Hilti, C. C. et al. Impaired performance on the Rapid Visual Information Processing task (RVIP) could be an endophenotype of schizophrenia. Psychiatry Res. 177, 60–64 (2010).

Article 
PubMed 

Google Scholar 

Crosbie, J. et al. Response inhibition and ADHD traits: correlates and heritability in a community sample. J. Abnorm. Child Psychol. 41, 497–507 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar 

Kuntsi, J. et al. Genetic analysis of reaction time variability: room for improvement? Psychol. Med. 43, 1323–1333 (2013).

Article 
PubMed 

Google Scholar 

Roalf, D. R. et al. Neurocognitive performance stability in a multiplex multigenerational study of schizophrenia. Schizophr. Bull. 39, 1008–1017 (2013).

Article 
PubMed 

Google Scholar 

Wootton, O., Dalvie, S., Susser, E., Gur, R. C. & Stein, D. J. Within-individual variability in cognitive performance in schizophrenia: a narrative review of the key literature and proposed research agenda. Schizophr. Res. 252, 329–334 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar 

Fox, M. D. & Raichle, M. E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8, 700–711 (2007).

Article 
PubMed 

Google Scholar 

Kelly, A. M. C., Uddin, L. Q., Biswal, B. B., Castellanos, F. X. & Milham, M. P. Competition between functional brain networks mediates behavioral variability. NeuroImage 39, 527–537 (2008).

Article 
PubMed 

Google Scholar 

Chang, S. E., Lenartowicz, A., Hellemann, G. S., Uddin, L. Q. & Bearden, C. E. Variability in cognitive task performance in early adolescence is associated with stronger between-network anticorrelation and future attention problems. Biol. Psychiatry Glob. Open Sci. 3, 948–957 (2023).

Article 
PubMed 

Google Scholar 

Fox, M. D. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl Acad. Sci. USA 102, 9673–9678 (2005).

Article 
PubMed 
PubMed Central 

Google Scholar 

Adhikari, B. M. et al. Functional network connectivity impairments and core cognitive deficits in schizophrenia. Hum. Brain Mapp. 40, 4593–4605 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Karcher, N. R., O’Brien, K. J., Kandala, S. & Barch, D. M. Resting-state functional connectivity and psychotic-like experiences in childhood: results from the Adolescent Brain Cognitive Development Study. Biol. Psychiatry 86, 7–15 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Chai, X. J. et al. Abnormal medial prefrontal cortex resting-state connectivity in bipolar disorder and schizophrenia. Neuropsychopharmacology 36, 2009–2017 (2011).

Whitfield-Gabrieli, S. et al. Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proc. Natl Acad. Sci. USA 106, 1279–1284 (2009).

Article 
PubMed 
PubMed Central 

Google Scholar 

Teeuw, J. et al. Genetic and environmental influences on functional connectivity within and between canonical cortical resting-state networks throughout adolescent development in boys and girls. NeuroImage 202, 116073 (2019).

Article 
PubMed 

Google Scholar 

Cao, H., Dixson, L., Meyer-Lindenberg, A. & Tost, H. Functional connectivity measures as schizophrenia intermediate phenotypes: advances, limitations, and future directions. Curr. Opin. Neurobiol. 36, 7–14 (2016).

Article 
PubMed 

Google Scholar 

Meyer-Lindenberg, A. Neural connectivity as an intermediate phenotype: brain networks under genetic control. Hum. Brain Mapp. 30, 1938–1946 (2009).

Article 
PubMed 
PubMed Central 

Google Scholar 

Stevens, M. C. The contributions of resting state and task-based functional connectivity studies to our understanding of adolescent brain network maturation. Neurosci. Biobehav. Rev. 70, 13–32 (2016).

Article 
PubMed 

Google Scholar 

Crone, E. A. & Dahl, R. E. Understanding adolescence as a period of social–affective engagement and goal flexibility. Nat. Rev. Neurosci. 13, 636–650 (2012).

Article 
PubMed 

Google Scholar 

Insel, T. R. Rethinking schizophrenia. Nature 468, 187–193 (2010).

Article 
PubMed 

Google Scholar 

Keller, A. S. et al. Hierarchical functional system development supports executive function. Trends Cogn. Sci. 27, 160–174 (2023).

Article 
PubMed 

Google Scholar 

Sydnor, V. J. et al. Neurodevelopment of the association cortices: patterns, mechanisms, and implications for psychopathology. Neuron 109, 2820–2846 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar 

Pines, A. R. et al. Dissociable multi-scale patterns of development in personalized brain networks. Nat. Commun. 13, 2647 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar 

Fair, D. A. et al. Development of distinct control networks through segregation and integration. Proc. Natl Acad. Sci. USA 104, 13507–13512 (2007).

Article 
PubMed 
PubMed Central 

Google Scholar 

Wang, C., Hu, Y., Weng, J., Chen, F. & Liu, H. Modular segregation of task-dependent brain networks contributes to the development of executive function in children. NeuroImage 206, 116334 (2020).

Article 
PubMed 

Google Scholar 

Chai, X. J., Ofen, N., Gabrieli, J. D. E. & Whitfield-Gabrieli, S. Selective development of anticorrelated networks in the intrinsic functional organization of the human brain. J. Cogn. Neurosci. 26, 501–513 (2014).

Price, A. J., Jaffe, A. E. & Weinberger, D. R. Cortical cellular diversity and development in schizophrenia. Mol. Psychiatry 26, 203–217 (2021).

Article 
PubMed 

Google Scholar 

Forsyth, J. K. & Lewis, D. A. Mapping the consequences of impaired synaptic plasticity in schizophrenia through development: an integrative model for diverse clinical features. Trends Cogn. Sci. 21, 760–778 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar 

Gulsuner, S. et al. Spatial and temporal mapping of de novo mutations in schizophrenia to a fetal prefrontal cortical network. Cell 154, 518–529 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar 

Casey, B. J. et al. The Adolescent Brain Cognitive Development (ABCD) study: imaging acquisition across 21 sites. Dev. Cogn. Neurosci. 32, 43–54 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Healy, C. et al. Childhood and adolescent psychotic experiences and risk of mental disorder: a systematic review and meta-analysis. Psychol. Med. 49, 1589–1599 (2019).

Article 
PubMed 

Google Scholar 

Lewis, D. A. & Levitt, P. Schizophrenia as a disorder of neurodevelopment. Annu. Rev. Neurosci. 25, 409–432 (2002).

Article 
PubMed 

Google Scholar 

Forsyth, J. K. et al. Synaptic and gene regulatory mechanisms in schizophrenia, autism, and 22q11.2 copy number variant–mediated risk for neuropsychiatric disorders. Biol. Psychiatry 87, 150–163 (2020).

Article 
PubMed 

Google Scholar 

Kang, H. J. et al. Spatio-temporal transcriptome of the human brain. Nature 478, 483–489 (2011).

Article 
PubMed 
PubMed Central 

Google Scholar 

Chen, J. et al. Shared and unique brain network features predict cognitive, personality, and mental health scores in the ABCD study. Nat. Commun. 13, 2217 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar 

Legge, S. E. et al. Associations between schizophrenia polygenic liability, symptom dimensions, and cognitive ability in schizophrenia. JAMA Psychiatry 78, 1143–1151 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar 

Pain, O. et al. Genome-wide analysis of adolescent psychotic-like experiences shows genetic overlap with psychiatric disorders. Am. J. Med. Genet. B 177, 416–425 (2018).

Article 

Google Scholar 

Karcher, N. R. et al. Psychotic-like experiences and polygenic liability in the Adolescent Brain Cognitive Development Study. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 7, 45–55 (2022).

PubMed 

Google Scholar 

Hernandez, L. M. et al. Multi-ancestry phenome-wide association of complement component 4 variation with psychiatric and brain phenotypes in youth. Genome Biol. 24, 42 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar 

Pardiñas, A. F. et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat. Genet. 50, 381–389 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Conomos, M. P., Miller, M. B. & Thornton, T. A. Robust inference of population structure for ancestry prediction and correction of stratification in the presence of relatedness. Genet. Epidemiol. 39, 276–293 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar 

Hubbard, L. et al. Evidence of common genetic overlap between schizophrenia and cognition. Schizophr. Bull. 42, 832–842 (2016).

Article 
PubMed 

Google Scholar 

Escott-Price, V. et al. Genetic liability to schizophrenia is negatively associated with educational attainment in UK Biobank. Mol. Psychiatry 25, 703–705 (2020).

Article 
PubMed 

Google Scholar 

Cross-Disorder Group of the Psychiatric Genomics Consortium & Cross-Disorder Group of the Psychiatric Genomics Consortium. Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders. Cell 179, 1469–1482.e11 (2019).

Article 

Google Scholar 

Karcher, N. R. et al. Assessment of the Prodromal Questionnaire—Brief Child Version for measurement of self-reported psychoticlike experiences in childhood. JAMA Psychiatry 75, 853–861 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Solmi, M. et al. Age at onset of mental disorders worldwide: large-scale meta-analysis of 192 epidemiological studies. Mol. Psychiatry 27, 281–295 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar 

Moses, M. et al. Working memory and reaction time variability mediate the relationship between polygenic risk and ADHD traits in a general population sample. Mol. Psychiatry 27, 5028–5037 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar 

Vainieri, I. et al. Polygenic association between attention-deficit/hyperactivity disorder liability and cognitive impairments. Psychol. Med. 52, 3150–3158 (2022).

Article 
PubMed 

Google Scholar 

Plomin, R. Genetics and general cognitive ability. Nature 402, C25–C29 (1999).

Article 
PubMed 

Google Scholar 

Blokland, G. A. M. et al. Heritability of neuropsychological measures in schizophrenia and nonpsychiatric populations: a systematic review and meta-analysis. Schizophr. Bull. 43, 788–800 (2017).

Article 
PubMed 

Google Scholar 

Davies, G. et al. Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nat. Commun. 10, 2068 (2018).

Article 

Google Scholar 

Germine, L. et al. Association between polygenic risk for schizophrenia, neurocognition and social cognition across development. Transl. Psychiatry 6, e924 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar 

Trampush, J. W. et al. GWAS meta-analysis reveals novel loci and genetic correlates for general cognitive function: a report from the COGENT Consortium. Mol. Psychiatry 22, 1651–1652 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar 

Riglin, L. et al. Schizophrenia risk alleles and neurodevelopmental outcomes in childhood: a population-based cohort study. Lancet Psychiatry 4, 57–62 (2017).

Article 
PubMed 

Google Scholar 

He, Q. et al. Influence of polygenic risk scores for schizophrenia and resilience on the cognition of individuals at-risk for psychosis. Transl. Psychiatry 11, 518 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar 

Jonas, K. G. et al. Schizophrenia polygenic risk score and 20-year course of illness in psychotic disorders. Transl. Psychiatry 9, 300 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Nakahara, S. et al. Polygenic risk score, genome-wide association, and gene set analyses of cognitive domain deficits in schizophrenia. Schizophr. Res. 201, 393–399 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Toulopoulou, T. et al. Polygenic risk score increases schizophrenia liability through cognition-relevant pathways. Brain 142, 471–485 (2019).

Article 
PubMed 

Google Scholar 

Richards, A. L. et al. The relationship between polygenic risk scores and cognition in schizophrenia. Schizophr. Bull. 46, 336–344 (2020).

PubMed 

Google Scholar 

Mallet, J., Le Strat, Y., Dubertret, C. & Gorwood, P. Polygenic risk scores shed light on the relationship between schizophrenia and cognitive functioning: review and meta-analysis. J. Clin. Med. Res. 9, 341 (2020).

Google Scholar 

Engen, M. J. et al. Polygenic scores for schizophrenia and general cognitive ability: associations with six cognitive domains, premorbid intelligence, and cognitive composite score in individuals with a psychotic disorder and in healthy controls. Transl. Psychiatry 10, 416 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar 

Shafee, R. et al. Polygenic risk for schizophrenia and measured domains of cognition in individuals with psychosis and controls. Transl. Psychiatry 8, 78 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 51, 584–591 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Iraji, A. et al. Spatial dynamic subspaces encode sex-specific schizophrenia disruptions in transient network overlap and its links to genetic risk. Biol. Psychiatry 96, 188–197 (2023).

Article 
PubMed 

Google Scholar 

Qi, S. et al. Derivation and utility of schizophrenia polygenic risk associated multimodal MRI frontotemporal network. Nat. Commun. 13, 4929 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar 

Wang, T. et al. Polygenic risk for five psychiatric disorders and cross-disorder and disorder-specific neural connectivity in two independent populations. NeuroImage Clin. 14, 441–449 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar 

Passiatore, R. et al. Changes in patterns of age-related network connectivity are associated with risk for schizophrenia. Proc. Natl Acad. Sci. USA 120, e2221533120 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar 

Kofler, M. J. et al. Reaction time variability in ADHD: a meta-analytic review of 319 studies. Clin. Psychol. Rev. 33, 795–811 (2013).

Article 
PubMed 

Google Scholar 

Tiego, J. et al. Dissecting schizotypy and its association with cognition and polygenic risk for schizophrenia in a nonclinical sample. Schizophr. Bull. 49, 1217–1228 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar 

Tervo-Clemmens, B. et al. A canonical trajectory of executive function maturation from adolescence to adulthood. Nat. Commun. 14, 6922 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar 

Selig, J. P., & Little, T. D. in Handbook of Developmental Research Methods Vol. 788 (ed. Laursen, B.) 265–278 (Guilford, 2012).

Geschwind, D. H. & Flint, J. Genetics and genomics of psychiatric disease. Science 349, 1489–1494 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar 

Ding, Y. et al. Polygenic scoring accuracy varies across the genetic ancestry continuum. Nature 618, 774–781 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar 

Choi, S. W. et al. PRSet: pathway-based polygenic risk score analyses and software. PLoS Genet. 19, e1010624 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar 

Kachuri, L. et al. Principles and methods for transferring polygenic risk scores across global populations. Nat. Rev. Genet. 25, 8–25 (2024).

Article 
PubMed 

Google Scholar 

Wang, Y. et al. Polygenic prediction across populations is influenced by ancestry, genetic architecture, and methodology. Cell Genom. 3, 100408 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar 

Wray, N. R. et al. From basic science to clinical application of polygenic risk scores: a primer. JAMA Psychiatry 78, 101–109 (2021).

Article 
PubMed 

Google Scholar 

Hauberg, M. E. et al. Common schizophrenia risk variants are enriched in open chromatin regions of human glutamatergic neurons. Nat. Commun. 11, 5581 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar 

Leth-Steensen, C., Elbaz, Z. K. & Douglas, V. I. Mean response times, variability, and skew in the responding of ADHD children: a response time distributional approach. Acta Psychol. 104, 167–190 (2000).

Article 

Google Scholar 

Williams, B. R., Hultsch, D. F., Strauss, E. H., Hunter, M. A. & Tannock, R. Inconsistency in reaction time across the life span. Neuropsychology 19, 88–96 (2005).

Article 
PubMed 

Google Scholar 

Ram, N. & Gerstorf, D. Time-structured and net intraindividual variability: tools for examining the development of dynamic characteristics and processes. Psychol. Aging 24, 778–791 (2009).

Article 
PubMed 
PubMed Central 

Google Scholar 

Suleri, A. et al. Exposure to prenatal infection and the development of internalizing and externalizing problems in children: a longitudinal population-based study. J. Child Psychol. Psychiatry 65, 874–886 (2024).

Article 
PubMed 

Google Scholar 

Paul, S. E. et al. Phenome-wide investigation of behavioral, environmental, and neural associations with cross-disorder genetic liability in youth of European ancestry. Preprint at medRxiv https://doi.org/10.1101/2023.02.10.23285783 (2023).

Garavan, H. et al. Recruiting the ABCD sample: design considerations and procedures. Dev. Cogn. Neurosci. 32, 16–22 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Townsend, L. et al. Development of three web-based computerized versions of the Kiddie Schedule for Affective Disorders and Schizophrenia Child Psychiatric Diagnostic Interview: preliminary validity data. J. Am. Acad. Child Adolesc. Psychiatry 59, 309–325 (2020).

Article 
PubMed 

Google Scholar 

Luciana, M. et al. Adolescent neurocognitive development and impacts of substance use: overview of the Adolescent Brain Cognitive Development (ABCD) baseline neurocognition battery. Dev. Cogn. Neurosci. 32, 67–79 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Loewy, R. L., Pearson, R., Vinogradov, S., Bearden, C. E. & Cannon, T. D. Psychosis risk screening with the Prodromal Questionnaire—Brief Version (PQ-B). Schizophr. Res. 129, 42–46 (2011).

Article 
PubMed 
PubMed Central 

Google Scholar 

Cicero, D. C., Krieg, A. & Martin, E. A. Measurement invariance of the Prodromal Questionnaire—Brief among white, Asian, Hispanic, and multiracial populations. Assessment 26, 294–304 (2019).

Article 
PubMed 

Google Scholar 

Hagler, D. J. Jr et al. Image processing and analysis methods for the Adolescent Brain Cognitive Development Study. NeuroImage 202, 116091 (2019).

Article 
PubMed 

Google Scholar 

Gordon, E. M. et al. Generation and evaluation of a cortical area parcellation from resting-state correlations. Cereb. Cortex 26, 288–303 (2016).

Article 
PubMed 

Google Scholar 

Peterson, R. E. et al. Genome-wide association studies in ancestrally diverse populations: opportunities, methods, pitfalls, and recommendations. Cell 179, 589–603 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Gogarten, S. M. et al. Genetic association testing using the GENESIS R/Bioconductor package. Bioinformatics 35, 5346–5348 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Demontis, D. et al. Genome-wide analyses of ADHD identify 27 risk loci, refine the genetic architecture and implicate several cognitive domains. Nat. Genet. 55, 198–208 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar 

Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 51, 431–444 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet. 50, 668–681 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Yu, D. et al. Interrogating the genetic determinants of Tourette’s syndrome and other tic disorders through genome-wide association studies. Am. J. Psychiatry 176, 217–227 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Lee, J. J. et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat. Genet. 50, 1112–1121 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Wootton, O. et al. Genome-wide association study in 404,302 individuals identifies 7 significant loci for reaction time variability. Mol. Psychiatry 28, 4011–4019 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar 

Ahern, J., Thompson, W., Fan, C. C. & Loughnan, R. Comparing pruning and thresholding with continuous shrinkage polygenic score methods in a large sample of ancestrally diverse adolescents from the ABCD Study®. Behav. Genet. 53, 292–309 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar 

Grotzinger, A. D. et al. Genomic structural equation modelling provides insights into the multivariate genetic architecture of complex traits. Nat. Hum. Behav. 3, 513–525 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Baker, E. et al. Gene-based analysis in HRC imputed genome wide association data identifies three novel genes for Alzheimer’s disease. PLoS ONE 14, e0218111 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar 

Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).

Article 

Google Scholar 

Bearden, C. E., et al. Attention-mediated genetic influences on psychotic symptomatology in adolescence. National Institutes of Mental Health Data Archive 2492 https://doi.org/10.15154/j8kt-v104 (2024).

Leave A Reply