Velligan, D. I. & Rao, S. The epidemiology and global burden of schizophrenia. J. Clin. Psychiatry 84, MS21078COM5 (2023).

Article 
PubMed 

Google Scholar
 

Millan, M. J. et al. Altering the course of schizophrenia: progress and perspectives. Nat. Rev. Drug Discov. 15, 485–515 (2016).

Article 
PubMed 

Google Scholar
 

Charlson, F. J. et al. Global epidemiology and burden of schizophrenia: findings from the global burden of disease study 2016. Schizophr. Bull. 44, 1195 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

McCutcheon, R. A., Reis Marques, T. & Howes, O. D. Schizophrenia—an overview. JAMA Psychiatry 77, 201–210 (2020).

Article 
PubMed 

Google Scholar
 

Friston, K. A theory of cortical responses. Philos. Trans. R. Soc. B 360, 815–836 (2005).

Article 

Google Scholar
 

Rao, R. P. N. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2, 79–87 (1999).

Article 
PubMed 

Google Scholar
 

Corlett, P. R. et al. Hallucinations and strong priors. Trends Cogn. Sci. 23, 114–127 (2019).

Article 
PubMed 

Google Scholar
 

Fletcher, P. C. & Frith, C. D. Perceiving is believing: a Bayesian approach to explaining the positive symptoms of schizophrenia. Nat. Rev. Neurosci. 10, 48–58 (2009).

Article 
PubMed 

Google Scholar
 

Powers, A. et al. A computational account of the development and evolution of psychotic symptoms. Biol. Psychiatry 97, 117–127 (2024).

Article 
PubMed 

Google Scholar
 

Sterzer, P. et al. The predictive coding account of psychosis. Biol. Psychiatry 84, 634–643 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Adams, R., Stephan, K., Brown, H., Frith, C. & Friston, K. The computational anatomy of psychosis. Front. Psychiatry 4, 47 (2013).

Harding, J. N. et al. A new predictive coding model for a more comprehensive account of delusions. Lancet Psychiatry 11, 295–302 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Marr, D. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information (MIT Press, 1982).

Schmack, K. et al. Delusions and the role of beliefs in perceptual inference. J. Neurosci. 33, 13701–13712 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Schmack, K., Schnack, A., Priller, J. & Sterzer, P. Perceptual instability in schizophrenia: probing predictive coding accounts of delusions with ambiguous stimuli. Schizophr. Res. Cogn. 2, 72–77 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Stuke, H., Weilnhammer, V. A., Sterzer, P. & Schmack, K. Delusion proneness is linked to a reduced usage of prior beliefs in perceptual decisions. Schizophr. Bull. 45, 80–86 (2019).

PubMed 

Google Scholar
 

Teufel, C., Kingdon, A., Ingram, J. N., Wolpert, D. M. & Fletcher, P. C. Deficits in sensory prediction are related to delusional ideation in healthy individuals. Neuropsychologia 48, 4169–4172 (2010).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Weilnhammer, V. et al. Psychotic experiences in schizophrenia and sensitivity to sensory evidence. Schizophr. Bull. 46, 927–936 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Cassidy, C. M. et al. A perceptual inference mechanism for hallucinations linked to striatal dopamine. Curr. Biol. 28, 503–514 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Haarsma, J. et al. Influence of prior beliefs on perception in early psychosis: effects of illness stage and hierarchical level of belief. J. Abnorm. Psychol. 129, 581–598 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Powers, A., Mathys, C. & Corlett, P. R. Pavlovian conditioning—induced hallucinations result from overweighting of perceptual priors. Science 357, 596–600 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Stuke, H., Kress, E., Weilnhammer, V. A., Sterzer, P. & Schmack, K. Overly strong priors for socially meaningful visual signals are linked to psychosis proneness in healthy individuals. Front. Psychol. 12, 583637 (2021).

Teufel, C. et al. Shift toward prior knowledge confers a perceptual advantage in early psychosis and psychosis-prone healthy individuals. Proc. Natl. Acad. Sci. USA 112, 13401–13406 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Corlett, P. R., Frith, C. D. & Fletcher, P. C. From drugs to deprivation: a Bayesian framework for understanding models of psychosis. Psychopharmacology 206, 515–530 (2009).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Notredame, C.-E., Pins, D., Deneve, S. & Jardri, R. What visual illusions teach us about schizophrenia. Front. Integr. Neurosci. 8, 63 (2014).

Sterzer, P., Mishara, A. L., Voss, M. & Heinz, A. Thought insertion as a self-disturbance: an integration of predictive coding and phenomenological approaches. Front. Hum. Neurosci. 10, 502 (2016).

Eckert, A.-L., Gounitski, Y., Guggenmos, M. & Sterzer, P. Cross-modality evidence for reduced choice history biases in psychosis-prone individuals. Schizophr. Bull. 49, 397–406 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Jardri, R. et al. Are hallucinations due to an imbalance between excitatory and inhibitory influences on the brain? Schizophr. Bull. 42, 1124–1134 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Schmack, K., Bosc, M., Sturgill, J., Ott, T. & Kepecs, A. Hallucination-like perception in mice provides neural-circuit insights into dopamine hypothesis of psychosis. Biol. Psychiatry 89, S44 (2021).

Article 

Google Scholar
 

Heinz, A. & Schlagenhauf, F. Dopaminergic dysfunction in schizophrenia: salience attribution revisited. Schizophr. Bull. 36, 472–485 (2010).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Corlett, P. R. & Fletcher, P. C. Delusions and prediction error: clarifying the roles of behavioural and brain responses. Cogn. Neuropsychiatry 20, 95–105 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Guloksuz, S. & van Os, J. The slow death of the concept of schizophrenia and the painful birth of the psychosis spectrum. Psychol. Med. 48, 229–244 (2018).

Article 
PubMed 

Google Scholar
 

Kapur, S. Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am. J. Psychiatry 160, 13–23 (2003).

Article 
PubMed 

Google Scholar
 

Deserno, L. et al. Volatility estimates increase choice switching and relate to prefrontal activity in schizophrenia. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 5, 173–183 (2020).

PubMed 

Google Scholar
 

Howes, O. D. et al. Dopaminergic function in the psychosis spectrum: an [18F]-DOPA imaging study in healthy individuals with auditory hallucinations. Schizophr. Bull. 39, 807–814 (2013).

Article 
PubMed 

Google Scholar
 

Davies, D. J., Teufel, C. & Fletcher, P. C. Anomalous perceptions and beliefs are associated with shifts toward different types of prior knowledge in perceptual inference. Schizophr. Bull. 44, 1245–1253 (2018).

Article 
PubMed 

Google Scholar
 

Mourgues-Codern, C. et al. Emergence and dynamics of delusions and hallucinations across stages in early psychosis. Biol. Psychiatry 98, 679–688 (2025).

Article 
PubMed 

Google Scholar
 

Sterzer, P., Voss, M., Schlagenhauf, F. & Heinz, A. Decision-making in schizophrenia: a predictive-coding perspective. NeuroImage 190, 133–143 (2019).

Article 
PubMed 

Google Scholar
 

Javitt, D. C. Glutamatergic theories of schizophrenia. Isr. J. Psychiatry Relat. Sci. 47, 4–16 (2010).

PubMed 

Google Scholar
 

Javitt, D. C. & Freedman, R. Sensory processing dysfunction in the personal experience and neuronal machinery of schizophrenia. Am. J. Psychiatry 172, 17–31 (2015).

Article 
PubMed 

Google Scholar
 

Demler, V. F., Sterner, E. F., Wilson, M., Zimmer, C. & Knolle, F. Association between increased anterior cingulate glutamate and psychotic-like experiences, but not autistic traits in healthy volunteers. Sci. Rep. 13, 12792 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Merritt, K., Egerton, A., Kempton, M. J., Taylor, M. J. & McGuire, P. K. Nature of glutamate alterations in schizophrenia: a meta-analysis of proton magnetic resonance spectroscopy studies. JAMA Psychiatry 73, 665–674 (2016).

Article 
PubMed 

Google Scholar
 

Knolle, F., Sterner, E. F., Demler, V. F., MacGregor, L. J. & Mathys, C. Guided by expectations: overweighted semantic priors in schizotypy and their links to glutamate. Biol. Psychiatry https://doi.org/10.1016/j.biopsych.2025.06.025 (2025).

Rushworth, M. F. S. & Behrens, T. E. J. Choice, uncertainty and value in prefrontal and cingulate cortex. Nat. Neurosci. 11, 389–397 (2008).

Article 
PubMed 

Google Scholar
 

Adams, R., Brown, H. R. & Friston, K. J. Bayesian inference, predictive coding and delusions. AVANT V, 51–88 (2014).

Article 

Google Scholar
 

Jardri, R. & Denève, S. Circular inferences in schizophrenia. Brain 136, 3227–3241 (2013).

Article 
PubMed 

Google Scholar
 

Javitt, D. C. When doors of perception close: bottom-up models of disrupted cognition in schizophrenia. Annu. Rev. Clin. Psychol. 5, 249–275 (2009).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Stephan, K. E., Friston, K. J. & Frith, C. D. Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophr. Bull. 35, 509–527 (2009).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ranson, A. et al. Top-down suppression of sensory cortex in an NMDAR hypofunction model of psychosis. Schizophr. Bull. 45, 1349–1357 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Schmack, K., Bosc, M., Ott, T., Sturgill, J. F. & Kepecs, A. Striatal dopamine mediates hallucination-like perception in mice. Science 372, eabf4740 (2021).

Article 
PubMed 

Google Scholar
 

Schmidt, A. et al. Modeling ketamine effects on synaptic plasticity during the mismatch negativity. Cereb. Cortex 23, 2394–2406 (2013).

Article 
PubMed 

Google Scholar
 

Weber, L. A. et al. Ketamine affects prediction errors about statistical regularities: a computational single-trial analysis of the mismatch negativity. J. Neurosci. 40, 5658–5668 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Glausier, J. R. & Lewis, D. A. Dendritic spine pathology in schizophrenia. Neuroscience 251, 90–107 (2013).

Article 
PubMed 

Google Scholar
 

Corlett, P. R., Honey, G. D. & Fletcher, P. C. Prediction error, ketamine and psychosis: an updated model. J. Psychopharmacol. 30, 1145–1155 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kafadar, E. et al. Modeling perception and behavior in individuals at clinical high risk for psychosis: support for the predictive processing framework. Schizophr. Res. 226, 167–175 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Leptourgos, P. et al. Relating glutamate, conditioned, and clinical hallucinations via 1H-MR spectroscopy. Schizophr. Bull. 48, 912–920 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Benrimoh, D. et al. Evidence for reduced sensory precision and increased reliance on priors in hallucination-prone individuals in a general population sample. Schizophr. Bull. 50, 349–362 (2024).

Article 
PubMed 

Google Scholar
 

Kafadar, E. et al. Conditioned hallucinations and prior over-weighting are state sensitive markers of hallucination susceptibility. Biol. Psychiatry 92, 772–780 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Altamura, M. et al. Are all forms of feature binding disturbed in schizophrenia? Evidence from a central vs. peripheral distinction in working memory. Psychiatry Res. 209, 9–14 (2013).

Article 
PubMed 

Google Scholar
 

Chhabra, S., Badcock, J. C., Maybery, M. T. & Leung, D. Context binding and hallucination predisposition: evidence of intact intentional and automatic integration of external features. Pers. Individ. Differ. 50, 834–839 (2011).

Article 

Google Scholar
 

Kang, S. S., MacDonald, A. W. & Sponheim, S. R. Dysfunctional neural processes underlying context processing deficits in schizophrenia. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 4, 644–654 (2019).

PubMed 
PubMed Central 

Google Scholar
 

Waters, F. A. V., Maybery, M. T., Badcock, J. C. & Michie, P. T. Context memory and binding in schizophrenia. Schizophr. Res. 68, 119–125 (2004).

Article 
PubMed 

Google Scholar
 

Alderson-Day, B. et al. Distinct processing of ambiguous speech in people with non-clinical auditory verbal hallucinations. Brain 140, 2475–2489 (2017).

Article 
PubMed 

Google Scholar
 

Schmack, K., Rothkirch, M., Priller, J. & Sterzer, P. Enhanced predictive signalling in schizophrenia. Hum. Brain Mapp. 38, 1767–1779 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Javitt, D. C. Sensory processing in schizophrenia: neither simple nor intact. Schizophr. Bull. 35, 1059–1064 (2009).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Karvelis, P., Seitz, A. R., Lawrie, S. M. & Seriès, P. Autistic traits, but not schizotypy, predict increased weighting of sensory information in Bayesian visual integration. eLife 7, e34115 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bévalot, C. & Meyniel, F. A dissociation between the use of implicit and explicit priors in perceptual inference. Commun. Psychol. 2, 111 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Dzafic, I. et al. Stronger top-down and weaker bottom-up frontotemporal connections during sensory learning are associated with severity of psychotic phenomena. Schizophr. Bull. 47, 1039–1047 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Daalman, K. & Diederen, K. M. A final common pathway to hearing voices: examining differences and similarities in clinical and non-clinical individuals. Psychosis 5, 236–246 (2013).

Article 

Google Scholar
 

Gold, J. M. et al. Phenomenological and cognitive features associated with auditory hallucinations in clinical and nonclinical voice hearers. Schizophr. Bull. 49, 1591–1601 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Goodwin, I., Kugel, J., Hester, R. & Garrido, M. I. Bayesian accounts of perceptual decisions in the nonclinical continuum of psychosis: greater imprecision in both top-down and bottom-up processes. PLOS Comput. Biol. 19, e1011670 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Foussias, G. & Remington, G. Negative symptoms in schizophrenia: avolition and Occam’s razor. Schizophr. Bull. 36, 359–369 (2010).

Article 
PubMed 

Google Scholar
 

Blanchard, J. J. & Cohen, A. S. The structure of negative symptoms within schizophrenia: implications for assessment. Schizophr. Bull. 32, 238–245 (2006).

Article 
PubMed 

Google Scholar
 

Fervaha, G., Foussias, G., Agid, O. & Remington, G. Amotivation and functional outcomes in early schizophrenia. Psychiatry Res. 210, 665–668 (2013).

Article 
PubMed 

Google Scholar
 

Krause, M. et al. Antipsychotic drugs for patients with schizophrenia and predominant or prominent negative symptoms: a systematic review and meta-analysis. Eur. Arch. Psychiatry Clin. Neurosci. 268, 625–639 (2018).

Article 
PubMed 

Google Scholar
 

Foussias, G., Agid, O., Fervaha, G. & Remington, G. Negative symptoms of schizophrenia: clinical features, relevance to real world functioning and specificity versus other CNS disorders. Eur. Neuropsychopharmacol. 24, 693–709 (2014).

Article 
PubMed 

Google Scholar
 

Messinger, J. W. et al. Avolition and expressive deficits capture negative symptom phenomenology: implications for DSM-5 and schizophrenia research. Clin. Psychol. Rev. 31, 161–168 (2011).

Article 
PubMed 

Google Scholar
 

Chan, R. C. K., Wang, L. & Lui, S. S. Y. Theories and models of negative symptoms in schizophrenia and clinical implications. Nat. Rev. Psychol. 1, 454–467 (2022).

Article 

Google Scholar
 

Bliksted, V. et al. Hyper- and hypomentalizing in patients with first-episode schizophrenia: fMRI and behavioral studies. Schizophr. Bull. 45, 377–385 (2019).

Article 
PubMed 

Google Scholar
 

Jeganathan, J. & Breakspear, M. An active inference perspective on the negative symptoms of schizophrenia. Lancet Psychiatry 8, 732–738 (2021).

Article 
PubMed 

Google Scholar
 

Kahnt, T., Heinzle, J., Park, S. Q. & Haynes, J.-D. The neural code of reward anticipation in human orbitofrontal cortex. Proc. Natl. Acad. Sci. USA 107, 6010–6015 (2010).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Chan, R. C. K. et al. Anticipatory and consummatory components of the experience of pleasure in schizophrenia: cross-cultural validation and extension. Psychiatry Res. 175, 181–183 (2010).

Article 
PubMed 

Google Scholar
 

Edwards, C. J., Cella, M., Tarrier, N. & Wykes, T. Predicting the future in schizophrenia: the discrepancy between anticipatory and consummatory pleasure. Psychiatry Res. 229, 462–469 (2015).

Article 
PubMed 

Google Scholar
 

Gard, D. E., Kring, A. M., Gard, M. G., Horan, W. P. & Green, M. F. Anhedonia in schizophrenia: distinctions between anticipatory and consummatory pleasure. Schizophr. Res. 93, 253–260 (2007).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Cassidy, C. M., Lepage, M., Harvey, P.-O. & Malla, A. Cannabis use and anticipatory pleasure as reported by subjects with early psychosis and community controls. Schizophr. Res. 137, 39–44 (2012).

Article 
PubMed 

Google Scholar
 

Da Silva, S. et al. Investigating consummatory and anticipatory pleasure across motivation deficits in schizophrenia and healthy controls. Psychiatry Res. 254, 112–117 (2017).

Article 
PubMed 

Google Scholar
 

Strauss, G. P., Wilbur, R. C., Warren, K. R., August, S. M. & Gold, J. M. Anticipatory vs. consummatory pleasure: what is the nature of hedonic deficits in schizophrenia? Psychiatry Res. 187, 36–41 (2011).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Strauss, G. P. & Gold, J. M. A new perspective on anhedonia in schizophrenia. Am. J. Psychiatry 169, 364–373 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Juckel, G. et al. Dysfunction of ventral striatal reward prediction in schizophrenic patients treated with typical, not atypical, neuroleptics. Psychopharmacology 187, 222–228 (2006).

Article 
PubMed 

Google Scholar
 

Juckel, G. et al. Dysfunction of ventral striatal reward prediction in schizophrenia. NeuroImage 29, 409–416 (2006).

Article 
PubMed 

Google Scholar
 

Nielsen, M. Ø. et al. Alterations of the brain reward system in antipsychotic naïve schizophrenia patients. Biol. Psychiatry 71, 898–905 (2012).

Article 
PubMed 

Google Scholar
 

Radua, J. et al. Ventral striatal activation during reward processing in psychosis: a neurofunctional meta-analysis. JAMA Psychiatry 72, 1243–1251 (2015).

Article 
PubMed 

Google Scholar
 

Schlagenhauf, F. et al. Reward system activation in schizophrenic patients switched from typical neuroleptics to olanzapine. Psychopharmacology 196, 673–684 (2008).

Article 
PubMed 

Google Scholar
 

Waltz, J. A. The neural underpinnings of cognitive flexibility and their disruption in psychotic illness. Neuroscience 345, 203–217 (2017).

Article 
PubMed 

Google Scholar
 

Kesby, J. P., Murray, G. K. & Knolle, F. Neural circuitry of salience and reward processing in psychosis. Biol. Psychiatry Glob. Open Sci. 3, 33–46 (2023).

Article 
PubMed 

Google Scholar
 

Gradin, V. B. et al. Expected value and prediction error abnormalities in depression and schizophrenia. Brain J. Neurol. 134, 1751–1764 (2011).

Article 

Google Scholar
 

Murray, G. K. et al. Substantia nigra/ventral tegmental reward prediction error disruption in psychosis. Mol. Psychiatry 13, 267–276 (2008).

Article 

Google Scholar
 

Waltz, J. A. et al. Patients with schizophrenia have a reduced neural response to both unpredictable and predictable primary reinforcers. Neuropsychopharmacology 34, 1567–1577 (2008).

Article 
PubMed 

Google Scholar
 

Ermakova, A. O. et al. Abnormal reward prediction-error signalling in antipsychotic naive individuals with first-episode psychosis or clinical risk for psychosis. Neuropsychopharmacology 43, 1691–1699 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Montagnese, M. et al. Reinforcement learning as an intermediate phenotype in psychosis? Deficits sensitive to illness stage but not associated with polygenic risk of schizophrenia in the general population. Schizophr. Res. 222, 389–396 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Pelizza, L. & Ferrari, A. Anhedonia in schizophrenia and major depression: state or trait? Ann. Gen. Psychiatry 8, 22 (2009).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Dunlop, B. W. & Nemeroff, C. B. The role of dopamine in the pathophysiology of depression. Arch. Gen. Psychiatry 64, 327–337 (2007).

Article 
PubMed 

Google Scholar
 

McCabe, C., Mishor, Z., Cowen, P. J. & Harmer, C. J. Diminished neural processing of aversive and rewarding stimuli during selective serotonin reuptake inhibitor treatment. Biol. Psychiatry 67, 439–445 (2010).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ubl, B. et al. Altered neural reward and loss processing and prediction error signalling in depression. Soc. Cogn. Affect. Neurosci. 10, 1102–1112 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Halahakoon, D. C. et al. Reward-processing behavior in depressed participants relative to healthy volunteers: a systematic review and meta-analysis. JAMA Psychiatry 77, 1286–1295 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Treadway, M. T. & Zald, D. H. Reconsidering anhedonia in depression: lessons from translational neuroscience. Neurosci. Biobehav. Rev. 35, 537–555 (2011).

Article 
PubMed 

Google Scholar
 

Vrieze, E. et al. Reduced reward learning predicts outcome in major depressive disorder. Biol. Psychiatry 73, 639–645 (2013).

Article 
PubMed 

Google Scholar
 

Dev, A. S., Arditte Hall, K. A. & Timpano, K. R. The relationship between psychiatric symptoms and affective forecasting bias. J. Behav. Ther. Exp. Psychiatry 79, 101825 (2023).

Article 
PubMed 

Google Scholar
 

Thompson, R. et al. Positive and negative affective forecasting in remitted individuals with bipolar I disorder, and major depressive disorder, and healthy controls. Cogn. Ther. Res. 41, 673–685 (2017).

Wenze, S. J., Gunthert, K. C. & German, R. E. Biases in affective forecasting and recall in individuals with depression and anxiety symptoms. Pers. Soc. Psychol. Bull. 38, 895–906 (2012).

Article 
PubMed 

Google Scholar
 

Liang, S., Wu, Y., Hanxiaoran, L., Greenshaw, A. J. & Li, T. Anhedonia in depression and schizophrenia: brain reward and aversion circuits. Neuropsychiatr. Dis. Treat. 18, 1385–1396 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Keren, H. et al. Reward processing in depression: a conceptual and meta-analytic review across fMRI and EEG studies. Am. J. Psychiatry 175, 1111–1120 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ng, T. H., Alloy, L. B. & Smith, D. V. Meta-analysis of reward processing in major depressive disorder reveals distinct abnormalities within the reward circuit. Transl. Psychiatry 9, 293 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, B. et al. Mapping anhedonia-specific dysfunction in a transdiagnostic approach: an ALE meta-analysis. Brain Imaging Behav. 10, 920–939 (2016).

Article 
PubMed 

Google Scholar
 

Leroy, A. et al. Reward anticipation in schizophrenia: a coordinate-based meta-analysis. Schizophr. Res. 218, 2–6 (2020).

Article 
PubMed 

Google Scholar
 

McCabe, C. Neural signals of ‘intensity’ but not ‘wanting’ or ‘liking’ of rewards may be trait markers for depression. J. Psychopharmacol. 30, 1020–1027 (2016).

Article 
PubMed 

Google Scholar
 

Knolle, F. et al. Investigating disorder-specific and transdiagnostic alterations in model-based and model-free decision-making. J. Psychiatry Neurosci. 49, E389–E401 (2024).

Article 
PubMed Central 

Google Scholar
 

Banaraki, A. K., Toghi, A. & Mohammadzadeh, A. RDoC framework through the lens of predictive processing: focusing on cognitive systems domain. Comput. Psychiatry 8, 178–201 (2024).

Article 

Google Scholar
 

Seth, A. K. Interoceptive inference, emotion, and the embodied self. Trends Cogn. Sci. 17, 565–573 (2013).

Article 
PubMed 

Google Scholar
 

Yao, B. & Thakkar, K. Interoception abnormalities in schizophrenia: a review of preliminary evidence and an integration with Bayesian accounts of psychosis. Neurosci. Biobehav. Rev. 132, 757–773 (2022).

Article 
PubMed 

Google Scholar
 

Ainley, V., Apps, M. A. J., Fotopoulou, A. & Tsakiris, M. ‘Bodily precision’: a predictive coding account of individual differences in interoceptive accuracy. Philos. Trans. R. Soc. B 371, 20160003 (2016).

Article 

Google Scholar
 

Poletti, M., Tortorella, A. & Raballo, A. Impaired corollary discharge in psychosis and at-risk states: integrating neurodevelopmental, phenomenological, and clinical perspectives. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 4, 832–841 (2019).

PubMed 

Google Scholar
 

Shergill, S. S., Samson, G., Bays, P. M., Frith, C. D. & Wolpert, D. M. Evidence for sensory prediction deficits in schizophrenia. Am. J. Psychiatry 162, 2384–2386 (2005).

Article 
PubMed 

Google Scholar
 

Martinelli, C., Rigoli, F. & Shergill, S. S. Aberrant force processing in schizophrenia. Schizophr. Bull. 43, 417–424 (2017).

PubMed 

Google Scholar
 

Wilquin, H. & Delevoye-Turrell, Y. Motor agency: a new and highly sensitive measure to reveal agency disturbances in early psychosis. PLoS ONE 7, e30449 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Thakkar, K. N., Schall, J. D., Logan, G. D. & Park, S. Response inhibition and response monitoring in a saccadic double-step task in schizophrenia. Brain Cogn. 95, 90–98 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ford, J. M., Roach, B. J., Faustman, W. O. & Mathalon, D. H. Synch before you speak: auditory hallucinations in schizophrenia. Am. J. Psychiatry 164, 458–466 (2007).

Article 
PubMed 

Google Scholar
 

Ford, J. M. Studying auditory verbal hallucinations using the RDoC framework. Psychophysiology 53, 298–304 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sheffield, J. M., Brinen, A. P., Feola, B., Heckers, S. & Corlett, P. R. Understanding cognitive behavioral therapy for psychosis through the predictive coding framework. Biol. Psychiatry Glob. Open Sci. 4, 100333 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Smith, R., Badcock, P. & Friston, K. J. Recent advances in the application of predictive coding and active inference models within clinical neuroscience. Psychiatry Clin. Neurosci. 75, 3–13 (2021).

Article 
PubMed 

Google Scholar
 

Miyake, N., Thompson, J., Skinbjerg, M. & Abi-Dargham, A. Presynaptic dopamine in schizophrenia. CNS Neurosci. Ther. 17, 104–109 (2011).

Article 
PubMed 

Google Scholar
 

Morrison, A. P. & Barratt, S. What are the components of CBT for psychosis? A Delphi study. Schizophr. Bull. 36, 136–142 (2010).

Article 
PubMed 

Google Scholar
 

Moritz, S. & Woodward, T. S. Metacognitive training in schizophrenia: from basic research to knowledge translation and intervention. Curr. Opin. Psychiatry 20, 619 (2007).

Article 
PubMed 

Google Scholar
 

Pell, G. S., Roth, Y. & Zangen, A. Modulation of cortical excitability induced by repetitive transcranial magnetic stimulation: influence of timing and geometrical parameters and underlying mechanisms. Prog. Neurobiol. 93, 59–98 (2011).

Article 
PubMed 

Google Scholar
 

Fiszdon, J. M., Choi, K. H., Bell, M. D., Choi, J. & Silverstein, S. M. Cognitive remediation for individuals with psychosis: efficacy and mechanisms of treatment effects. Psychol. Med. 46, 3275–3289 (2016).

Article 
PubMed 

Google Scholar
 

Laukkonen, R. E. & Slagter, H. A. From many to (n)one: meditation and the plasticity of the predictive mind. Neurosci. Biobehav. Rev. 128, 199–217 (2021).

Article 
PubMed 

Google Scholar
 

Fong, C. Y., Law, W. H. C., Uka, T. & Koike, S. Auditory mismatch negativity under predictive coding framework and its role in psychotic disorders. Front. Psychiatry 11, 557932 (2020).

Kirihara, K. et al. A predictive coding perspective on mismatch negativity impairment in schizophrenia. Front. Psychiatry 11, 660 (2020).

Donaldson, K. R. et al. Mismatch negativity and clinical trajectories in psychotic disorders: five-year stability and predictive utility. Psychol. Med. 53, 5818–5828 (2023).

Article 
PubMed 

Google Scholar
 

Kafadar, E. et al. Conditioned hallucinations and prior overweighting are state-sensitive markers of hallucination susceptibility. Biol. Psychiatry 15, 772–780 (2022).

Article 

Google Scholar
 

Fryer, S. L. et al. Deficits in auditory predictive coding in individuals with the psychosis risk syndrome: prediction of conversion to psychosis. J. Abnorm. Psychol. 129, 599–611 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hauke, D. J. Aberrant hierarchical prediction errors are associated with transition to psychosis: a computational single-trial analysis of the mismatch negativity. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 8, 1176–1185 (2023).

PubMed 

Google Scholar
 

Knolle, F. et al. Action selection in early stages of psychosis: an active inference approach. J. Psychiatry Neurosci. 48, E78–E89 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Vilares, I. & Kording, K. P. Dopaminergic medication increases reliance on current information in Parkinson’s disease. Nat. Hum. Behav. 1, 0129 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Fusar-Poli, P. et al. Prevention of psychosis: advances in detection, prognosis, and intervention. JAMA Psychiatry 77, 755–765 (2020).

Article 
PubMed 

Google Scholar
 

Suvisaari, J. et al. Is it possible to predict the future in first-episode psychosis? Front. Psychiatry 9, 580 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Fišar, Z. Biological hypotheses, risk factors, and biomarkers of schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 120, 110626 (2023).

Article 
PubMed 

Google Scholar
 

Kraguljac, N. V. et al. Neuroimaging biomarkers in schizophrenia. Am. J. Psychiatry 178, 509–521 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lin, P. et al. Consensus on potential biomarkers developed for use in clinical tests for schizophrenia. Gen. Psychiatry 35, e100685 (2022).

Article 

Google Scholar
 

Gillan, C. M. & Daw, N. D. Taking psychiatry research online. Neuron 91, 19–23 (2016).

Article 
PubMed 

Google Scholar
 

Casaletto, K. B. & Heaton, R. K. Neuropsychological assessment: past and future. J. Int. Neuropsychol. Soc. 23, 778–790 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Goodwin, I., Hester, R. & Garrido, M. I. Temporal stability of Bayesian belief updating in perceptual decision-making. Behav. Res. Methods 56, 6349–6362 (2024).

Article 
PubMed 

Google Scholar
 

Pálffy, Z., Farkas, K., Csukly, G., Kéri, S. & Polner, B. Cross-modal auditory priors drive the perception of bistable visual stimuli with reliable differences between individuals. Sci. Rep. 11, 16943 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

McGorry, P. D. et al. Spurious precision: procedural validity of diagnostic assessment in psychotic disorders. Am. J. Psychiatry 152, 220–223 (1995).

Article 
PubMed 

Google Scholar
 

Matuszak, J. & Piasecki, M. Inter-rater reliability in psychiatric diagnosis. Psychiatr. Times 29, 12–13 (2012).


Google Scholar
 

Gibbs-Dean, T. et al. Belief updating in psychosis, depression and anxiety disorders: a systematic review across computational modelling approaches. Neurosci. Biobehav. Rev. 147, 105087 (2023).

Article 
PubMed 

Google Scholar
 

Wilson, R. C. & Collins, A. G. Ten simple rules for the computational modeling of behavioral data. eLife 8, e49547 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Button, K. S. et al. Power failure: why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 14, 365–376 (2013).

Article 
PubMed 

Google Scholar
 

Haarsma, J. et al. Precision weighting of cortical unsigned prediction error signals benefits learning, is mediated by dopamine, and is impaired in psychosis. Mol. Psychiatry 26, 5320–5333 (2021).

Article 
PubMed 

Google Scholar
 

Hauke, D. J. et al. Altered perception of environmental volatility during social learning in emerging psychosis. Comput. Psychiatry 8, 1–22 (2024).

Article 

Google Scholar
 

Lalousis, P. A. et al. Heterogeneity and classification of recent onset psychosis and depression: a multimodal machine learning approach. Schizophr. Bull. 47, 1130–1140 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Taylor, J. A., Larsen, K. M. & Garrido, M. I. Multi-dimensional predictions of psychotic symptoms via machine learning. Hum. Brain Mapp. 41, 5151–5163 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kahneman, D. Experiences of collaborative research. Am. Psychol. 58, 723–730 (2003).

Article 
PubMed 

Google Scholar
 

Olcese, U. et al. Accelerating research on consciousness: an adversarial collaboration to test contrasting predictions of the integrated information theory and predictive processing accounts of consciousness—version 2. OSF https://doi.org/10.17605/OSF.IO/4RN85 (2024).

Cleeremans, A. Theory as adversarial collaboration. Nat. Hum. Behav. 6, 485–486 (2022).

Article 
PubMed 

Google Scholar
 

Melloni, L. et al. An adversarial collaboration protocol for testing contrasting predictions of global neuronal workspace and integrated information theory. PLoS ONE 18, e0268577 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Yaron, I., Melloni, L., Pitts, M. & Mudrik, L. The ConTraSt database for analysing and comparing empirical studies of consciousness theories. Nat. Hum. Behav. 6, 593–604 (2022).

Article 
PubMed 

Google Scholar
 

Mathys, C. D. et al. Uncertainty in perception and the Hierarchical Gaussian Filter. Front. Hum. Neurosci. 8, 825 (2014).

Katthagen, T., Fromm, S., Wieland, L. & Schlagenhauf, F. Models of dynamic belief updating in psychosis—a review across different computational approaches. Front. Psychiatry 13, 814111 (2022).

Weber, L. A. et al. The generalized Hierarchical Gaussian Filter. Preprint at https://doi.org/10.48550/arXiv.2305.10937 (2024).

Marek, S. et al. Reproducible brain-wide association studies require thousands of individuals. Nature 603, 654–660 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Markiewicz, C. J. et al. The OpenNeuro resource for sharing of neuroscience data. eLife 10, e71774 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Rahnev, D. et al. The Confidence Database. Nat. Hum. Behav. 4, 317–325 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

The International Brain Laboratory et al. Standardized and reproducible measurement of decision-making in mice. eLife 10, e63711 (2021).

Article 

Google Scholar
 

Nassar, M. R., Waltz, J. A., Albrecht, M. A., Gold, J. M. & Frank, M. J. All or nothing belief updating in patients with schizophrenia reduces precision and flexibility of beliefs. Brain 144, 1013–1029 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Baker, S. C., Konova, A. B., Daw, N. D. & Horga, G. A distinct inferential mechanism for delusions in schizophrenia. Brain 142, 1797–1812 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Reed, E. J. et al. Paranoia as a deficit in non-social belief updating. eLife 9, e56345 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Limongi, R., Bohaterewicz, B., Nowicka, M., Plewka, A. & Friston, K. J. Knowing when to stop: aberrant precision and evidence accumulation in schizophrenia. Schizophr. Res. 197, 386–391 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kaliuzhna, M. et al. No evidence for abnormal priors in early vision in schizophrenia. Schizophr. Res. 210, 245–254 (2019).

Article 
PubMed 

Google Scholar
 

van Leeuwen, T. M. et al. Perceptual gains and losses in synesthesia and schizophrenia. Schizophr. Bull. 47, 722–730 (2021).

Article 
PubMed 

Google Scholar
 

Bansal, S. et al. Association between failures in perceptual updating and the severity of psychosis in schizophrenia. JAMA Psychiatry 79, 169–177 (2022).

Article 
PubMed 

Google Scholar
 

Scheliga, S., Schwank, R., Scholle, R., Habel, U. & Kellermann, T. A neural mechanism underlying predictive visual motion processing in patients with schizophrenia. Psychiatry Res. 318, 114934 (2022).

Article 
PubMed 

Google Scholar
 

Larsen, K. M. et al. Aberrant connectivity in auditory precision encoding in schizophrenia spectrum disorder and across the continuum of psychotic-like experiences. Schizophr. Res. 222, 185–194 (2020).

Article 
PubMed 

Google Scholar
 

Simonsen, A. et al. Taking others into account: combining directly experienced and indirect information in schizophrenia. Brain J. Neurol. 144, 1603–1614 (2021).

Article 

Google Scholar
 

Alamia, A. et al. Oscillatory traveling waves provide evidence for predictive coding abnormalities in schizophrenia. Biol. Psychiatry 98, 167–174 (2025).

Article 
PubMed 

Google Scholar
 

Castiello, S. et al. Delusional unreality and predictive processing. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 10, 709–717 (2025).

PubMed 

Google Scholar
 

Kowalski, J. et al. Associations of cognitive expectancies with auditory hallucinations and hallucinatory-like experiences in patients with schizophrenia. Schizophr. Bull. 51, 780–791 (2025).

Article 
PubMed 

Google Scholar
 

Fromm, S. P. et al. Neural correlates of uncertainty processing in psychosis spectrum disorder. Brain Commun. 7, fcaf073 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Cole, D. M. et al. Atypical processing of uncertainty in individuals at risk for psychosis. NeuroImage Clin. 26, 102239 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Silverstein, S. M. et al. Increased face detection responses on the mooney faces test in people at clinical high risk for psychosis. npj Schizophr. 7, 26 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Charlton, C. E. et al. Atypical prediction error learning is associated with prodromal symptoms in individuals at clinical high risk for psychosis. Schizophrenia 8, 105 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Rossi-Goldthorpe, R. et al. Different learning aberrations relate to delusion-like beliefs with different contents. Brain 147, 2854–2866 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Tran, T. et al. Increased face perception in individuals at clinical high-risk for psychosis: mechanisms, sex differences, and clinical correlates. Schizophrenia 11, 74 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Dzafic, I., Randeniya, R., Harris, C. D., Bammel, M. & Garrido, M. I. Statistical learning and inference is impaired in the nonclinical continuum of psychosis. J. Neurosci. 40, 6759–6769 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kreis, I. et al. Aberrant uncertainty processing is linked to psychotic-like experiences, autistic traits, and is reflected in pupil dilation during probabilistic learning. Cogn. Affect. Behav. Neurosci. 23, 905–919 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Suthaharan, P. et al. Paranoia and belief updating during the COVID-19 crisis. Nat. Hum. Behav. 5, 1190–1202 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Haarsma, J., Deveci, N., Corbin, N., Callaghan, M. F. & Kok, P. Expectation cues and false percepts generate stimulus-specific activity in distinct layers of the early visual cortex. J. Neurosci. 43, 7946–7957 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Seymour, K., Sterzer, P. & Soto, N. Believing is seeing: the link between paranormal beliefs and perceiving signal in noise. Conscious. Cogn. 106, 103418 (2022).

Article 
PubMed 

Google Scholar
 

Alderson-Day, B. et al. Susceptibility to auditory hallucinations is associated with spontaneous but not directed modulation of top-down expectations for speech. Neurosci. Conscious. 2022, niac002 (2022).

Lhotka, M., Ischebeck, A., Helmlinger, B. & Zaretskaya, N. No common factor for illusory percepts, but a link between pareidolia and delusion tendency: a test of predictive coding theory. Front. Psychol. 13, 1067985 (2023).

Tarasi, L., Martelli, M. E., Bortoletto, M., di Pellegrino, G. & Romei, V. Neural signatures of predictive strategies track individuals along the autism–schizophrenia continuum. Schizophr. Bull. 49, 1294–1304 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bott, A., Steer, H. C., Faße, J. L. & Lincoln, T. M. Visualizing threat and trustworthiness prior beliefs in face perception in high versus low paranoia. Schizophrenia 10, 40 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Mazer, P. et al. How distinct autism and schizotypal trait dimensions influence neural predictive processing: an event-related potential study. Brain Cogn. 188, 106329 (2025).

Article 
PubMed 

Google Scholar
 

Bartels-Velthuis, A. A., Willige, G., van de, Jenner, J. A. & Wiersma, D. Consistency and reliability of the auditory vocal hallucination rating scale (AVHRS). Epidemiol. Psychiatr. Sci. 21, 305–310 (2012).

Article 
PubMed 

Google Scholar
 

Faustman, W. O. & Overall, J. E. in The Use of Psychological Testing for Treatment Planning and Outcomes Assessment (ed. Maruish, M. E.) 2nd edn 791–830 (Lawrence Erlbaum, 1999).

Yung, A. R. et al. Mapping the onset of psychosis: the comprehensive assessment of at-risk mental states. Aust. N. Z. J. Psychiatry 39, 964–971 (2005).

Article 
PubMed 

Google Scholar
 

Konings, M., Bak, M., Hanssen, M., Van Os, J. & Krabbendam, L. Validity and reliability of the CAPE: a self-report instrument for the measurement of psychotic experiences in the general population. Acta Psychiatr. Scand. 114, 55–61 (2006).

Article 
PubMed 

Google Scholar
 

Bell, V., Halligan, P. W. & Ellis, H. D. The Cardiff Anomalous Perceptions Scale (CAPS): a new validated measure of anomalous perceptual experience. Schizophr. Bull. 32, 366–377 (2006).

Article 
PubMed 

Google Scholar
 

Kern, B., Axelrod, J., Gao, Y. & Keedy, S. Exchange the magnifying glass for a microscope: the Chicago Hallucination Assessment Tool (CHAT). Schizophr. Bull. 41, S110 (2015).


Google Scholar
 

Launay, G. & Slade, P. Launay–Slade Hallucination Scale. APA PsycNet https://doi.org/10.1037/t13160-000 (1981).

McGlashan, T. H., Miller, T. J., Woods, S. W., Hoffman, R. E., Davidson, L. in Early Intervention in Psychotic Disorders. NATO Science Series (eds Miller, T. et al.) Vol. 91, 135–149 (Springer, 2001).

Kay, S. R., Fiszbein, A. & Opler, L. A. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr. Bull. 13, 261–276 (1987).

Article 
PubMed 

Google Scholar
 

Peters, E. R., Joseph, S. A. & Garety, P. A. Measurement of delusional ideation in the normal population: introducing the PDI (Peters et al. delusions inventory). Schizophr. Bull. 25, 553–576 (1999).

Article 
PubMed 

Google Scholar
 

Loewy, R. L., Bearden, C. E., Johnson, J. K., Raine, A. & Cannon, T. D. The prodromal questionnaire (PQ): preliminary validation of a self-report screening measure for prodromal and psychotic syndromes. Schizophr. Res. 79, 117–125 (2005).

Article 
PubMed 

Google Scholar
 

Kline, E. et al. Psychosis risk screening in youth: a validation study of three self-report measures of attenuated psychosis symptoms. Schizophr. Res. 141, 72–77 (2012).

Article 
PubMed 

Google Scholar
 

Freeman, D. et al. The revised Green et al., paranoid thoughts scale (R-GPTS): psychometric properties, severity ranges, and clinical cut-offs. Psychol. Med. 51, 244–253 (2021).

Article 
PubMed 

Google Scholar
 

Morrison, A. P., Wells, A. & Nothard, S. Cognitive and emotional predictors of predisposition to hallucinations in non-patients. Br. J. Clin. Psychol. 41, 259–270 (2002).

Article 
PubMed 

Google Scholar
 

Rust, J. The Rust inventory of schizotypal cognitions (RISC). Schizophr. Bull. 14, 317–322 (1988).

Article 
PubMed 

Google Scholar
 

Shankman, S. A. et al. Reliability and validity of severity dimensions of psychopathology assessed using the Structured Clinical Interview for DSM-5 (SCID). Int. J. Methods Psychiatr. Res. 27, e1590 (2018).

Article 
PubMed 

Google Scholar
 

McGlashan, T. H., Walsh, B. & Woods, S. The Psychosis-Risk Syndrome: Handbook for Diagnosis and Follow-Up (Oxford Univ. Press, 2010).

Raine, A. The SPQ: a scale for the assessment of schizotypal personality based on DSM-III-R criteria. Schizophr. Bull. 17, 555–564 (1991).

Article 
PubMed 

Google Scholar
 

Comments are closed.