Cortese, S. et al. Incidence, prevalence, and global burden of ADHD from 1990 to 2019 across 204 countries: data, with critical re-analysis, from the Global Burden of Disease study. Mol. Psychiatry 28, 4823–4830 (2023).
Faraone, S. V. et al. Attention-deficit/hyperactivity disorder. Nat. Rev. Dis. Prim. 10, 11 (2024).
Norman, L. J. et al. Longitudinal trajectories of childhood and adolescent attention deficit hyperactivity disorder diagnoses in three cohorts. EClinicalMedicine 60, 102021 (2023).
Shaw, P. & Sudre, G. Adolescent attention-deficit/hyperactivity disorder: understanding teenage symptom trajectories. Biol. Psychiatry 89, 152–161 (2021).
Shaw, P. et al. Psychostimulant treatment and the developing cortex in attention deficit hyperactivity disorder. Am. J. Psychiatry 166, 58–63 (2009).
Shaw, P. et al. Trajectories of cerebral cortical development in childhood and adolescence and adult attention-deficit/hyperactivity disorder. Biol. Psychiatry 74, 599–606 (2013).
Sudre, G. et al. Predicting the course of ADHD symptoms through the integration of childhood genomic, neural, and cognitive features. Mol. Psychiatry 26, 4046–4054 (2021).
Sibley, M. H. et al. Variable patterns of remission from ADHD in the Multimodal Treatment Study of ADHD. Am. J. Psychiatry 179, 142–151 (2022).
Shaw, P. et al. Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proc. Natl Acad. Sci. USA 104, 19649–19654 (2007).
Shaw, P. et al. Longitudinal mapping of cortical thickness and clinical outcome in children and adolescents with attention-deficit/hyperactivity disorder. Arch. Gen. Psychiatry 63, 540–549 (2006).
Muetzel, R. L. et al. Tracking brain development and dimensional psychiatric symptoms in children: a longitudinal population-based neuroimaging study. Am. J. Psychiatry 175, 54–62 (2017).
Wang, Y. et al. The neural and genetic underpinnings of different developmental trajectories of attention-deficit/hyperactivity symptoms in children and adolescents. BMC Med. 22, 223 (2024).
Jung, T. & Wickrama, K. A. S. An introduction to latent class growth analysis and growth mixture modeling. Soc. Personal. Psychol. Compass 2, 302–317 (2008).
Guerrera, S. et al. Assessment of psychopathological comorbidities in children and adolescents with autism spectrum disorder using the child behavior checklist. Front. Psychiatry https://doi.org/10.3389/fpsyt.2019.00535 (2019).
Chen, J. W. et al. Best practice guidelines for propensity score methods in medical research: consideration on theory, implementation, and reporting. A review. Arthroscopy 38, 632–642 (2022).
Shaw, M. et al. A systematic review and analysis of long-term outcomes in attention deficit hyperactivity disorder: effects of treatment and non-treatment. BMC Med. 10, 99 (2012).
Mechler, K., Banaschewski, T., Hohmann, S. & Häge, A. Evidence-based pharmacological treatment options for ADHD in children and adolescents. Pharmacol. Ther. 230, 107940 (2022).
Baboli, R. et al. Distinct structural brain network properties in children with familial versus non-familial attention-deficit/hyperactivity disorder (ADHD). Cortex 179, 1–13 (2024).
Long, Y. et al. Distinct brain structural abnormalities in attention-deficit/hyperactivity disorder and substance use disorders: a comparative meta-analysis. Transl. Psychiatry 12, 368 (2022).
Hoogman, M. et al. Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: a cross-sectional mega-analysis. Lancet Psychiatry 4, 310–319 (2017).
Bahrami, S. et al. Distributed genetic architecture across the hippocampal formation implies common neuropathology across brain disorders. Nat. Commun. 13, 3436 (2022).
Noble, K. G. et al. Hippocampal volume varies with educational attainment across the life-span. Front. Hum. Neurosci. 6, 307 (2012).
Kandola, A., Hendrikse, J., Lucassen, P. J. & Yücel, M. Aerobic exercise as a tool to improve hippocampal plasticity and function in humans: practical implications for mental health treatment. Front. Hum. Neurosci. 10, 373 (2016).
Saccaro, L. F. et al. Limbic-sensorimotor tug of war for the hippocampus: dynamic functional connectivity as a transdiagnostic vulnerability marker in offspring of emotion dysregulation patients. Biol. Psychiatry Cogn. Neurosci. Neuroimaging https://doi.org/10.1016/j.bpsc.2025.03.007 (2025).
Russell, V. A. Neurobiology of animal models of attention-deficit hyperactivity disorder. J. Neurosci. Methods 161, 185–198 (2007).
Hilton, B. J., Griffin, J. M., Fawcett, J. W. & Bradke, F. Neuronal maturation and axon regeneration: unfixing circuitry to enable repair. Nat. Rev. Neurosci. 25, 649–667 (2024).
Anacker, C. & Hen, R. Adult hippocampal neurogenesis and cognitive flexibility—linking memory and mood. Nat. Rev. Neurosci. 18, 335–346 (2017).
Shen, C. et al. Neural correlates of the dual-pathway model for ADHD in adolescents. Am. J. Psychiatry 177, 844–854 (2020).
Shaw, P., Stringaris, A., Nigg, J. & Leibenluft, E. Emotion dysregulation in attention deficit hyperactivity disorder. Am. J. Psychiatry 171, 276–293 (2014).
Sakai, J. How synaptic pruning shapes neural wiring during development and, possibly, in disease. Proc. Natl Acad. Sci. USA 117, 16096–16099 (2020).
Demontis, D. et al. Genome-wide analyses of ADHD identify 27 risk loci, refine the genetic architecture and implicate several cognitive domains. Nat. Genet. 55, 198–208 (2023).
Contreras, D. et al. Methylphenidate restores behavioral and neuroplasticity impairments in the prenatal nicotine exposure mouse model of ADHD: evidence for involvement of AMPA receptor subunit composition and synaptic spine morphology in the hippocampus. Int. J. Mol. Sci. https://doi.org/10.3390/ijms23137099 (2022).
Ginsberg, Y., Quintero, J., Anand, E., Casillas, M. & Upadhyaya, H. P. Underdiagnosis of attention-deficit/hyperactivity disorder in adult patients: a review of the literature. Prim. Care Companion CNS Disord. https://doi.org/10.4088/PCC.13r01600 (2014).
Isaac, V., Lopez, V. & Escobar, M. J. Can attention-deficit/hyperactivity disorder be considered a form of cerebellar dysfunction. Front. Neurosci. 19, 1453025 (2025).
Wang, Y. et al. Association of emotional and behavioral problems with the development of the substantia nigra, subthalamic nucleus, and red nucleus volumes and asymmetries from childhood to adolescence: a longitudinal cohort study. Transl. Psychiatry 14, 117 (2024).
Schumann, G. et al. The IMAGEN study: reinforcement-related behaviour in normal brain function and psychopathology. Mol. Psychiatry 15, 1128–1139 (2010).
Nigg, J. T. et al. The Oregon ADHD-1000: a new longitudinal data resource enriched for clinical cases and multiple levels of analysis. Dev. Cogn. Neurosci. 60, 101222 (2023).
DuPaul, G. J., Power, T. J., Anastopoulos, A. D. & Reid, R. ADHD Rating Scale—IV: Checklists, Norms, and Clinical Interpretation. (The Guilford Press, 1998).
Achenbach, T. M. Achenbach System of Empirically Based Assessment (ASEBA). In The Encyclopedia of Clinical Psychology (eds Cautin, R. L. & Lilienfeld, S. O.) 1–8 (Wiley-Blackwell, 2015); https://doi.org/10.1002/9781118625392.wbecp150
Nakamura, B. J., Ebesutani, C., Bernstein, A. & Chorpita, B. F. A psychometric analysis of the Child Behavior Checklist DSM-Oriented Scales. J. Psychopathol. Behav. Assess. 31, 178–189 (2009).
Bernanke, J. et al. Structural brain measures among children with and without ADHD in the Adolescent Brain and Cognitive Development Study cohort: a cross-sectional US population-based study. Lancet Psychiatry 9, 222–231 (2022).
Li, Q. et al. Cognitive predictors of mental health trajectories are mediated by inferior frontal and occipital development during adolescence. Mol. Psychiatry https://doi.org/10.1038/s41380-025-02912-6 (2025).
Bleck, T. P., Nowinski, C. J., Gershon, R. & Koroshetz, W. J. What is the NIH Toolbox, and what will it mean to neurology?. Neurology 80, 874–875 (2013).
Acker, W. J. I. J. O. M.-M. S. A computerized approach to psychological screening—The Bexley-Maudsley Automated Psychological Screening and the Bexley-Maudsley Category Sorting Test. Int. J. Man Mach. Stud. 17, 361–369 (1982).
Serrano-Ibáñez, E. R., Ramírez-Maestre, C., Esteve, R. & López-Martínez, A. E. The behavioural inhibition system, behavioural activation system and experiential avoidance as explanatory variables of comorbid chronic pain and posttraumatic stress symptoms. Eur. J. Psychotraumatol. 10, 1581013 (2019).
Mujahid, M. S., Diez Roux, A. V., Morenoff, J. D. & Raghunathan, T. Assessing the measurement properties of neighborhood scales: from psychometrics to ecometrics. Am. J. Epidemiol. 165, 858–867 (2007).
Sanford, K., Bingham, C. R. & Zucker, R. A. Validity issues with the Family Environment Scale: psychometric resolution and research application with alcoholic families. Psychol. Assess. 11, 315–325 (1999).
Arthur, M. W. et al. Measuring risk and protection in communities using the Communities That Care Youth Survey. Eval. Program Plann. 30, 197–211 (2007).
Gonzalez, R. et al. An update on the assessment of culture and environment in the ABCD Study: emerging literature and protocol updates over three measurement waves. Dev. Cogn. Neurosci. 52, 101021 (2021).
Goodman, R., Meltzer, H. & Bailey, V. The Strengths and Difficulties Questionnaire: a pilot study on the validity of the self-report version. Int. Rev. Psychiatry 15, 173–177 (2003).
Ferreira, V. R. et al. Sleep disturbance scale for children: translation, cultural adaptation, and validation. Sleep Med. 10, 457–463 (2009).
Bunford, N. et al. The Difficulties in Emotion Regulation Scale-Parent Report: a psychometric investigation examining adolescents with and without ADHD. Assessment 27, 921–940 (2020).
Hagler, D. J. et al. Image processing and analysis methods for the Adolescent Brain Cognitive Development Study. NeuroImage 202, 116091 (2019).
Fischl, B. FreeSurfer. NeuroImage 62, 774–781 (2012).
Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31, 968–980 (2006).
Fischl, B. et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33, 341–355 (2002).
Hawrylycz, M. J. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012).
Arnatkevic̆iūtė, A., Fulcher, B. D. & Fornito, A. A practical guide to linking brain-wide gene expression and neuroimaging data. NeuroImage 189, 353–367 (2019).
Dukart, J. et al. JuSpace: a tool for spatial correlation analyses of magnetic resonance imaging data with nuclear imaging derived neurotransmitter maps. Hum. Brain Mapp. 42, 555–566 (2021).
Nigg, J. T. et al. Attention-deficit/hyperactivity disorder (ADHD) and being overweight/obesity: new data and meta-analysis. Clin. Psychol. Rev. 43, 67–79 (2016).
Zhao, C.-l. et al. Sex differences of signal complexity at resting-state functional magnetic resonance imaging and their associations with the estrogen-signaling pathway in the brain. Cogn. Neurodyn. https://doi.org/10.1007/s11571-023-09954-y (2023).
Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. & Morishima, K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45, D353–D361 (2017).
Ashburner, M. et al. Gene Ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).
Piñero, J. et al. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 45, D833–D839 (2016).
Koopmans, F. et al. SynGO: an evidence-based, expert-curated knowledge base for the synapse. Neuron 103, 217–234.e214 (2019).
Larivière, S. et al. The ENIGMA Toolbox: multiscale neural contextualization of multisite neuroimaging datasets. Nat. Methods 18, 698–700 (2021).