Kitamura T, Suga R. Depressive and negative symptoms in major psychiatric disorders. Compr Psychiatry. 1991;32:88–94.

CAS 
PubMed 

Google Scholar
 

Strauss GP, Cohen AS. A transdiagnostic review of negative symptom phenomenology and etiology. Schizophr Bull. 2017;43:712–9.

PubMed 
PubMed Central 

Google Scholar
 

Kraepelin E. Dementia Praecox and Paraphrenia. Edinburgh: ES Livington; 1919.


Google Scholar
 

Sauvé G, Brodeur MB, Shah JL, Lepage M. The prevalence of negative symptoms across the stages of the psychosis continuum. Harv Rev Psychiatry. 2019;27:15–32.

PubMed 

Google Scholar
 

Fusar-Poli P, Papanastasiou E, Stahl D, Rocchetti M, Carpenter W, Shergill S, et al. Treatments of negative symptoms in schizophrenia: meta-analysis of 168 randomized placebo-controlled trials. Schizophr Bull. 2015;41:892–9.

PubMed 

Google Scholar
 

Salamone JD, Correa M, Yang J-H, Rotolo R, Presby R. Dopamine, effort-based choice, and behavioral economics: basic and translational research. Front Behav Neurosci. 2018;12:52.

PubMed 
PubMed Central 

Google Scholar
 

Salamone JD, Correa M. The mysterious motivational functions of mesolimbic dopamine. Neuron. 2012;76:470–85.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Treadway MT, Zald DH. Parsing anhedonia: translational models of reward-processing deficits in psychopathology. Curr Dir Psychol Sci. 2013;22:244–9.

PubMed 
PubMed Central 

Google Scholar
 

Berridge KC, Robinson TE. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Rev. 1998;28:309–69.

CAS 
PubMed 

Google Scholar
 

Salamone JD, Correa M, Farrar A, Mingote SM. Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology (Berl). 2007;191:461–82.

CAS 
PubMed 

Google Scholar
 

Correa M, Carlson BB, Wisniecki A, Salamone JD. Nucleus accumbens dopamine and work requirements on interval schedules. Behav Brain Res. 2002;137:179–87.

CAS 
PubMed 

Google Scholar
 

Worden LT, Shahriari M, Farrar AM, Sink KS, Hockemeyer J, Müller CE, et al. The adenosine A2A antagonist MSX-3 reverses the effort-related effects of dopamine blockade: differential interaction with D1 and D2 family antagonists. Psychopharmacology (Berl). 2009;203:489–99.

CAS 
PubMed 

Google Scholar
 

Bardgett ME, Depenbrock M, Downs N, Points M, Green L. Dopamine modulates effort-based decision making in rats. Behav Neurosci. 2009;123:242–51.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wardle MC, Treadway MT, Mayo LM, Zald DH, De Wit H. Amping Up Effort: Effects of d -amphetamine on human effort-based decision-making. J Neurosci. 2011;31:16597–602.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Soder HE, Cooper JA, Lopez-Gamundi P, Hoots JK, Nunez C, Lawlor VM, et al. Dose-response effects of d-amphetamine on effort-based decision-making and reinforcement learning. Neuropsychopharmacol. 2021;46:1078–85.

CAS 

Google Scholar
 

Farrar AM, Segovia KN, Randall PA, Nunes EJ, Collins LE, Stopper CM, et al. Nucleus accumbens and effort-related functions: behavioral and neural markers of the interactions between adenosine A2A and dopamine D2 receptors. Neuroscience. 2010;166:1056–67.

CAS 
PubMed 

Google Scholar
 

Nunes EJ, Randall PA, Santerre JL, Given AB, Sager TN, Correa M, et al. Differential effects of selective adenosine antagonists on the effort-related impairments induced by dopamine D1 and D2 antagonism. Neuroscience. 2010;170:268–80.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Trifilieff P, Feng B, Urizar E, Winiger V, Ward RD, Taylor KM, et al. Increasing dopamine D2 receptor expression in the adult nucleus accumbens enhances motivation. Mol Psychiatry. 2013;18:1025–33.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Treadway MT, Buckholtz JW, Cowan RL, Woodward ND, Li R, Ansari MS, et al. Dopaminergic mechanisms of individual differences in human effort-based decision-making. J Neurosci. 2012;32:6170–6.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Arulpragasam AR, Cooper JA, Nuutinen MR, Treadway MT. Corticoinsular circuits encode subjective value expectation and violation for effortful goal-directed behavior. Proc Natl Acad Sci USA. 2018;115:E5233–42.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lopez-Gamundi P, Yao Y-W, Chong TT-J, Heekeren HR, Mas-Herrero E, Marco-Pallarés J. The neural basis of effort valuation: A meta-analysis of functional magnetic resonance imaging studies. Neuroscience & Biobehavioral Reviews. 2021;131:1275–87.


Google Scholar
 

Chang WC, Westbrook A, Strauss GP, Chu AOK, Chong CSY, Siu CMW, et al. Abnormal cognitive effort allocation and its association with amotivation in first-episode psychosis. Psychol Med. 2020;50:2599–609.

CAS 
PubMed 

Google Scholar
 

Gold JM, Waltz JA, Frank MJ. Effort cost computation in schizophrenia: a commentary on the recent literature. Biol Psychiatry. 2015;78:747–53.

PubMed 
PubMed Central 

Google Scholar
 

Hershenberg R, Satterthwaite TD, Daldal A, Katchmar N, Moore TM, Kable JW, et al. Diminished effort on a progressive ratio task in both unipolar and bipolar depression. J Affect Disord. 2016;196:97–100.

PubMed 
PubMed Central 

Google Scholar
 

Moran EK, Prevost C, Culbreth AJ, Barch DM. Effort-cost decision-making in psychotic and mood disorders. Journal of Psychopathology and Clinical Science. 2023;132:490–8.

PubMed 
PubMed Central 

Google Scholar
 

Strauss GP, Bartolomeo LA, Luther L. Reduced willingness to expend effort for rewards is associated with risk for conversion and negative symptom severity in youth at clinical high-risk for psychosis. Psychol Med. 2023;53:714–21.

PubMed 

Google Scholar
 

Treadway MT, Bossaller NA, Shelton RC, Zald DH. Effort-based decision-making in major depressive disorder: A translational model of motivational anhedonia. J Abnorm Psychol. 2012;121:553–8.

PubMed 
PubMed Central 

Google Scholar
 

Fervaha G, Graff-Guerrero A, Zakzanis KK, Foussias G, Agid O, Remington G. Incentive motivation deficits in schizophrenia reflect effort computation impairments during cost-benefit decision-making. J Psychiatr Res. 2013;47:1590–6.

PubMed 

Google Scholar
 

McCarthy JM, Treadway MT, Bennett ME, Blanchard JJ. Inefficient effort allocation and negative symptoms in individuals with schizophrenia. Schizophr Res. 2016;170:278–84.

PubMed 
PubMed Central 

Google Scholar
 

Gold JM, Strauss GP, Waltz JA, Robinson BM, Brown JK, Frank MJ. Negative symptoms of schizophrenia are associated with abnormal effort-cost computations. Biol Psychiatry. 2013;74:130–6.

PubMed 
PubMed Central 

Google Scholar
 

Yang X, Huang J, Harrision P, Roser ME, Tian K, Wang D, et al. Motivational differences in unipolar and bipolar depression, manic bipolar, acute and stable phase schizophrenia. J Affect Disord. 2021;283:254–61.

PubMed 

Google Scholar
 

Cathomas F, Klaus F, Guetter K, Seifritz E, Hartmann-Riemer MN, Tobler PN, et al. Associations between negative symptoms and effort discounting in patients with schizophrenia and major depressive disorder. Schizophrenia Bulletin Open. 2021;2:sgab022.

PubMed 
PubMed Central 

Google Scholar
 

Luther L, Firmin RL, Lysaker PH, Minor KS, Salyers MP. A meta-analytic review of self-reported, clinician-rated, and performance-based motivation measures in schizophrenia: Are we measuring the same “stuff”? Clin Psychol Rev. 2018;61:24–37.

PubMed 
PubMed Central 

Google Scholar
 

Nusslock R, Alloy LB. Reward processing and mood-related symptoms: An RDoC and translational neuroscience perspective. J Affect Disord. 2017;216:3–16.

PubMed 
PubMed Central 

Google Scholar
 

Wang Y, Wang Y, Huang J, Sun X, Wang X, Zhang S, et al. Shared and distinct reward neural mechanisms among patients with schizophrenia, major depressive disorder, and bipolar disorder: an effort-based functional imaging study. Eur Arch Psychiatry Clin Neurosci. 2022;272:859–71.

PubMed 

Google Scholar
 

Culbreth AJ, Moran EK, Kandala S, Westbrook A, Barch DM. Effort, avolition, and motivational experience in schizophrenia: analysis of behavioral and neuroimaging data with relationships to daily motivational experience. Clinical Psychological Science. 2020;8:555–68.

PubMed 
PubMed Central 

Google Scholar
 

Forbes EE, Hariri AR, Martin SL, Silk JS, Moyles DL, Fisher PM, et al. Altered striatal activation predicting real-world positive affect in adolescent major depressive disorder. AJP. 2009;166:64–73.


Google Scholar
 

Keedwell PA, Andrew C, Williams SCR, Brammer MJ, Phillips ML. The neural correlates of anhedonia in major depressive disorder. Biol Psychiatry. 2005;58:843–53.

PubMed 

Google Scholar
 

Prettyman GE, Kable JW, Didier P, Shankar S, Satterthwaite TD, Davatzikos C, et al. Relationship of ventral striatum activation during effort discounting to clinical amotivation severity in schizophrenia. NPJ Schizophr. 2021;7:48.

PubMed 
PubMed Central 

Google Scholar
 

Radua J, Schmidt A, Borgwardt S, Heinz A, Schlagenhauf F, McGuire P, et al. Ventral striatal activation during reward processing in psychosis: a neurofunctional meta-analysis. JAMA Psychiatry. 2015;72:1243–51.

PubMed 

Google Scholar
 

Culbreth AJ, Moran EK, Barch DM. Effort-cost decision-making in psychosis and depression: could a similar behavioral deficit arise from disparate psychological and neural mechanisms? Psychol Med. 2018;48:889–904.

CAS 
PubMed 

Google Scholar
 

Pretus C, Bergé D, Guell X, Pérez V, Vilarroya Ó. Brain activity and connectivity differences in reward value discrimination during effort computation in schizophrenia. Eur Arch Psychiatry Clin Neurosci. 2021;271:647–59.

PubMed 

Google Scholar
 

Cooper JA, Barch DM, Reddy LF, Horan WP, Green MF, Treadway MT. Effortful goal-directed behavior in schizophrenia: Computational subtypes and associations with cognition. J Abnorm Psychol. 2019;128:710–22.

PubMed 
PubMed Central 

Google Scholar
 

Treadway MT, Buckholtz JW, Schwartzman AN, Lambert WE, Zald DH. Worth the ‘EEfRT’? The Effort Expenditure for Rewards Task as an Objective Measure of Motivation and Anhedonia. PLoS ONE 2009;4:e6598.

First MB, Williams JB, Karg RS, Spitzer RL Structured clinical interview for DSM-5—Research version (SCID-5 for DSM-5, research version; SCID-5-RV). Arlington, VA: American Psychiatric Association. 2015. 2015.

Miller TJ, McGlashan TH, Rosen JL, Cadenhead K, Ventura J, McFarlane W, et al. Prodromal assessment with the structured interview for prodromal syndromes and the scale of prodromal symptoms: predictive validity, interrater reliability, and training to reliability. Schizophr Bull. 2003;29:703–15.

PubMed 

Google Scholar
 

Miller GA, Chapman JP. Misunderstanding analysis of covariance. J Abnorm Psychol. 2001;110:40–8.

CAS 
PubMed 

Google Scholar
 

Kirkpatrick B, Fenton WS, Carpenter WT, Marder SR. The NIMH-MATRICS consensus statement on negative symptoms. Schizophr Bull. 2006;32:214–9.

PubMed 
PubMed Central 

Google Scholar
 

Kirkpatrick B, Strauss GP, Nguyen L, Fischer BA, Daniel DG, Cienfuegos A, et al. The brief negative symptom scale: psychometric properties. Schizophr Bull. 2011;37:300–5.

PubMed 

Google Scholar
 

Kring AM, Gur RE, Blanchard JJ, Horan WP, Reise SP. The Clinical Assessment Interview for Negative Symptoms (CAINS): Final Development and Validation. AJP. 2013;170:165–72.


Google Scholar
 

Andreasen NC. The scale for the assessment of negative symptoms (SANS): conceptual and theoretical foundations. Br J Psychiatry Suppl. 1989;155:49–58.

Strauss GP, Walker EF, Pelletier-Baldelli A, Carter NT, Ellman LM, Schiffman J, et al. Development and validation of the negative symptom inventory-psychosis risk. Schizophr Bull. 2023;49:1205–16.

PubMed 
PubMed Central 

Google Scholar
 

Hawk AB. Diagnostic criteria and five-year outcome in schizophrenia: a report from the international pilot study of schizophrenia. Arch Gen Psychiatry. 1975;32:343.

CAS 
PubMed 

Google Scholar
 

Birchwood M, Smith JO, Cochrane R, Wetton S, Copestake S. The social functioning scale the development and validation of a new scale of social adjustment for use in family intervention programmes with schizophrenic patients. Br J Psychiatry. 1990;157:853–9.

CAS 
PubMed 

Google Scholar
 

Auther AM, Smith CW, Cornblatt BA Global Functioning: Social Scale (GF: Social). Glen Oaks, NY: Zucker Hillside Hospital. 2006.

Niendam TA, Bearden CE, Johnson JK, Cannon TD Global Functioning: Role Scale (GF: Role). Los Angeles, CA: University of California, Los Angeles. 2006.

Nuechterlein KH, Green MF, Kern RS, Baade LE, Barch DM, Cohen JD, et al. The MATRICS consensus cognitive battery, part 1: test selection, reliability, and validity. AJP. 2008;165:203–13.


Google Scholar
 

Wechsler D Wechsler Adult Intelligence Scale-Third Edition. 1997.

Fervaha G, Hill C, Agid O, Takeuchi H, Foussias G, Siddiqui I, et al. Examination of the validity of the brief neurocognitive assessment (BNA) for schizophrenia. Schizophr Res. 2015;166:304–9.

PubMed 

Google Scholar
 

Keefe R. The brief assessment of cognition in schizophrenia: reliability, sensitivity, and comparison with a standard neurocognitive battery. Schizophr Res. 2004;68:283–97.

PubMed 

Google Scholar
 

Benedict RHB, Schretlen D, Groninger L, Brandt J. Hopkins verbal learning test – revised: normative data and analysis of inter-form and test-retest reliability. Clin Neuropsychol. 1998;12:43–55.


Google Scholar
 

Cannon TD, Yu C, Addington J, Bearden CE, Cadenhead KS, Cornblatt BA, et al. An Individualized risk calculator for research in prodromal psychosis. AJP. 2016;173:980–8.


Google Scholar
 

Zhang T, Xu L, Tang Y, Li H, Tang X, Cui H, et al. Prediction of psychosis in prodrome: development and validation of a simple, personalized risk calculator. Psychol Med. 2019;49:1990–8.

PubMed 

Google Scholar
 

Schwarz G. Estimating the dimension of a model. The Annals of Statistics. 1978;6:461-4.

Raftery AE. Bayesian model selection in social research. Sociol Methodol. 1995;25:111.


Google Scholar
 

Dai J, Kerestes R, Upton DJ, Busemeyer JR, Stout JC. An improved cognitive model of the Iowa and Soochow Gambling Tasks with regard to model fitting performance and tests of parameter consistency. Front Psychol. 2015;6:229.

PubMed 
PubMed Central 

Google Scholar
 

Lefebvre G, Lebreton M, Meyniel F, Bourgeois-Gironde S, Palminteri S. Behavioural and neural characterization of optimistic reinforcement learning. Nat Hum Behav. 2017;1:0067.


Google Scholar
 

Barch DM, Treadway MT, Schoen N. Effort, anhedonia, and function in schizophrenia: reduced effort allocation predicts amotivation and functional impairment. J Abnorm Psychol. 2014;123:387.

PubMed 
PubMed Central 

Google Scholar
 

Kramer CY. Extension of multiple range tests to group means with unequal numbers of replications. Biometrics. 1956;12:307.


Google Scholar
 

Tukey JW. Comparing individual means in the analysis of variance. Biometrics. 1949;5:99.

CAS 
PubMed 

Google Scholar
 

Kremen WS, Seidman LJ, Faraone SV, Pepple JR, Lyons MJ, Tsuang MT. The ‘3 Rs’ and neuropsychological function in schizophrenia: a test of the matching fallacy in biological relatives. Psychiatry Res. 1995;56:135–43.

CAS 
PubMed 

Google Scholar
 

Gold JM, Corlett PR, Strauss GP, Schiffman J, Ellman LM, Walker EF, et al. Enhancing psychosis risk prediction through computational cognitive neuroscience. Schizophr Bull. 2020;46:1346–52.

PubMed 
PubMed Central 

Google Scholar
 

Salazar De Pablo G, Radua J, Pereira J, Bonoldi I, Arienti V, Besana F, et al. Probability of transition to psychosis in individuals at clinical high risk: an updated meta-analysis. JAMA Psychiatry. 2021;78:970.

PubMed 
PubMed Central 

Google Scholar
 

Barch DM, Culbreth AJ, Ben Zeev D, Campbell A, Nepal S, Moran EK. Dissociation of cognitive effort–based decision making and its associations with symptoms, cognition, and everyday life function across schizophrenia, bipolar disorder, and depression. Biol Psychiatry. 2023;94:501–10.

PubMed 
PubMed Central 

Google Scholar
 

Culbreth AJ, Moran EK, Mahaphanit W, Erickson MA, Boudewyn MA, Frank MJ, et al. A transdiagnostic study of effort-cost decision-making in psychotic and mood disorders. Schizophrenia Bulletin. 2024;50:339-348.

Ahmed AO, Strauss GP, Buchanan RW, Kirkpatrick B, Carpenter WT. Are negative symptoms dimensional or categorical? detection and validation of deficit schizophrenia with taxometric and latent variable mixture models. SCHBUL. 2015;41:879–91.


Google Scholar
 

Saperia S, Felsky D, Da Silva S, Siddiqui I, Rector N, Remington G, et al. Modeling effort-based decision making: individual differences in schizophrenia and major depressive disorder. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging. 2023;8:1041–9.

PubMed 

Google Scholar
 

Gold JM, Waltz JA, Prentice KJ, Morris SE, Heerey EA. Reward processing in schizophrenia: a deficit in the representation of value. Schizophr Bull. 2008;34:835–47.

PubMed 
PubMed Central 

Google Scholar
 

Collins AGE, Albrecht MA, Waltz JA, Gold JM, Frank MJ. Interactions among working memory, reinforcement learning, and effort in value-based choice: a new paradigm and selective deficits in schizophrenia. Biol Psychiatry. 2017;82:431–9.

PubMed 
PubMed Central 

Google Scholar
 

Nagendra A, Black C, Penn DL. Black americans and schizophrenia: racism as a driver of inequities in psychosis diagnosis, assessment, and treatment. Schizophr Res. 2023;253:1–4.

PubMed 

Google Scholar
 

Comments are closed.